skip to main content


Search for: All records

Creators/Authors contains: "Kallus, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the efficient off-policy evaluation of natural stochastic policies, which are defined in terms of deviations from the unknown behaviour policy. This is a departure from the literature on off-policy evaluation that largely consider the evaluation of explicitly specified policies. Crucially, offline reinforcement learning with natural stochastic policies can help alleviate issues of weak overlap, lead to policies that build upon current practice, and improve policies' implementability in practice. Compared with the classic case of a prespecified evaluation policy, when evaluating natural stochastic policies, the efficiency bound, which measures the best-achievable estimation error, is inflated since the evaluation policy itself is unknown. In this paper we derive the efficiency bounds of two major types of natural stochastic policies: tilting policies and modified treatment policies. We then propose efficient nonparametric estimators that attain the efficiency bounds under lax conditions and enjoy a partial double robustness property. 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  2. In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors, inducing confounding and biasing estimates derived assuming a perfect Markov decision process (MDP) model. In “Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes,” A. Bennett and N. Kallus tackle this by considering off-policy evaluation in a partially observed MDP (POMDP). Specifically, they consider estimating the value of a given target policy in an unknown POMDP, given observations of trajectories generated by a different and unknown policy, which may depend on the unobserved states. They consider both when the target policy value can be identified the observed data and, given identification, how best to estimate it. Both these problems are addressed by extending the framework of proximal causal inference to POMDP settings, using sequences of so-called bridge functions. This results in a novel framework for off-policy evaluation in POMDPs that they term proximal reinforcement learning, which they validate in various empirical settings. 
    more » « less
    Free, publicly-accessible full text available September 26, 2024
  3. Because the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never observed, so the 10% worst-affected cannot be identified, whereas distributional treatment effects only compare the first deciles within each treatment group, which does not correspond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution. We leverage the availability of pretreatment covariates and characterize the tightest possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown CATE function, which can be very complex if we use rich covariates to best control for heterogeneity. We develop a debiasing method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by black box machine learning or even inconsistently. Studying a hypothetical change to French job search counseling services, our bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the Division of Information and Intelligent Systems [Grant 1939704]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4819 . 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available October 6, 2024
  5. Abstract

    The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. We introduce a very general class of estimators called the variational method of moments (VMM), motivated by a variational minimax reformulation of optimally weighted generalized method of moments for finite sets of moments. VMM controls infinitely for many moments characterized by flexible function classes such as neural nets and kernel methods, while provably maintaining statistical efficiency unlike existing related minimax estimators. We also develop inference algorithms and demonstrate the empirical strengths of VMM estimation and inference in experiments.

     
    more » « less
  6. We study contextual stochastic optimization problems, where we leverage rich auxiliary observations (e.g., product characteristics) to improve decision making with uncertain variables (e.g., demand). We show how to train forest decision policies for this problem by growing trees that choose splits to directly optimize the downstream decision quality rather than split to improve prediction accuracy as in the standard random forest algorithm. We realize this seemingly computationally intractable problem by developing approximate splitting criteria that use optimization perturbation analysis to eschew burdensome reoptimization for every candidate split, so that our method scales to large-scale problems. We prove that our splitting criteria consistently approximate the true risk and that our method achieves asymptotic optimality. We extensively validate our method empirically, demonstrating the value of optimization-aware construction of forests and the success of our efficient approximations. We show that our approximate splitting criteria can reduce running time hundredfold while achieving performance close to forest algorithms that exactly reoptimize for every candidate split. This paper was accepted by Hamid Nazerzadeh, data science. 
    more » « less
  7. Off-policy evaluation (OPE) in reinforcement learning is notoriously difficult in long- and infinite-horizon settings due to diminishing overlap between behavior and target policies. In this paper, we study the role of Markovian and time-invariant structure in efficient OPE. We first derive the efficiency bounds and efficient influence functions for OPE when one assumes each of these structures. This precisely characterizes the curse of horizon: in time-variant processes, OPE is only feasible in the near-on-policy setting, where behavior and target policies are sufficiently similar. But, in time-invariant Markov decision processes, our bounds show that truly off-policy evaluation is feasible, even with only just one dependent trajectory, and provide the limits of how well we could hope to do. We develop a new estimator based on double reinforcement learning (DRL) that leverages this structure for OPE. Our DRL estimator simultaneously uses estimated stationary density ratios and q-functions and remains efficient when both are estimated at slow, nonparametric rates and remains consistent when either is estimated consistently. We investigate these properties and the performance benefits of leveraging the problem structure for more efficient OPE. 
    more » « less
  8. We study a nonparametric contextual bandit problem in which the expected reward functions belong to a Hölder class with smoothness parameter β. We show how this interpolates between two extremes that were previously studied in isolation: nondifferentiable bandits (β at most 1), with which rate-optimal regret is achieved by running separate noncontextual bandits in different context regions, and parametric-response bandits (infinite [Formula: see text]), with which rate-optimal regret can be achieved with minimal or no exploration because of infinite extrapolatability. We develop a novel algorithm that carefully adjusts to all smoothness settings, and we prove its regret is rate-optimal by establishing matching upper and lower bounds, recovering the existing results at the two extremes. In this sense, our work bridges the gap between the existing literature on parametric and nondifferentiable contextual bandit problems and between bandit algorithms that exclusively use global or local information, shedding light on the crucial interplay of complexity and regret in contextual bandits. 
    more » « less